

второй евразийский инновационный форум «АКТУАЛЬНЫЕ ПРОБЛЕМЫ ЗАСТРОЙКИ И БЕЗОПАСНОСТИ КРУПНЫХ ГОРОДОВ»

13 - 14 июня 2024 года Казахстан

СОВРЕМЕННЫЕ КОНСТРУКЦИИ ЖЕЛЕЗОБЕТОННЫХ ШПАЛ ДЛЯ СКОРОСТНЫХ УЧАСТКОВ ЖЕЛЕЗНЫХ ДОРОГ

ШАЯХМЕТОВ САУЛЕТ БЕРЛИКАШЕВИЧ

Доктор технических наук, профессор, НЕКОММЕРЧЕСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ К.И. САТПАЕВА» ИНСТИТУТ «АРХИТЕКТУРЫ И СТРОИТЕЛЬСТВА ИМЕНИ Т.БАСЕНОВА», КАФЕДРА «СТРОИТЕЛЬСТВО И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ»

АЛИМКУЛОВ МУРАТ МАМЕТКУЛОВИЧ,

кандидат технических наук, доцент ГЛАВНЫЙ ИНЖЕНЕР "TOO ISTGROOP CO"

ЖЕЛЕЗНОДОРОЖНЫЙ ПУТЬ — ЭТО КОМПЛЕКС ИНЖЕНЕРНЫХ СООРУЖЕНИЙ, ПРЕДНАЗНАЧЕННЫЙ ДЛЯ ПРОПУСКА ПО НЕМУ ПОЕЗДОВ С УСТАНОВЛЕННОЙ СКОРОСТЬЮ.

ПО ФУНКЦИОНАЛЬНОМУ НАЗНАЧЕНИЮ КОНСТРУКЦИЯ ЖЕЛЕЗНОДОРОЖНОГО ПУТИ РАЗДЕЛЯЕТСЯ НА

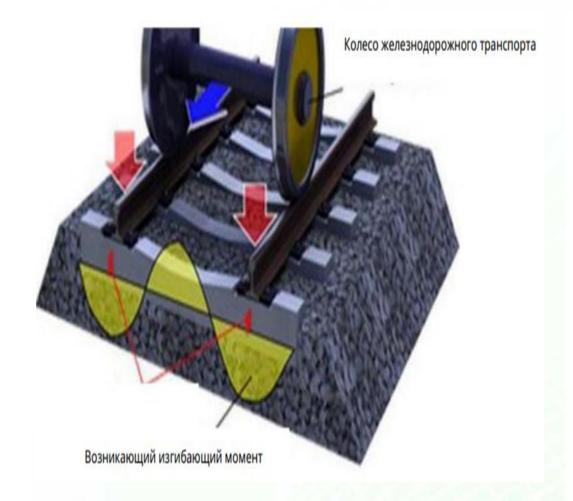
-ВЕРХНЕЕ СТРОЕНИЕ ПУТИ;

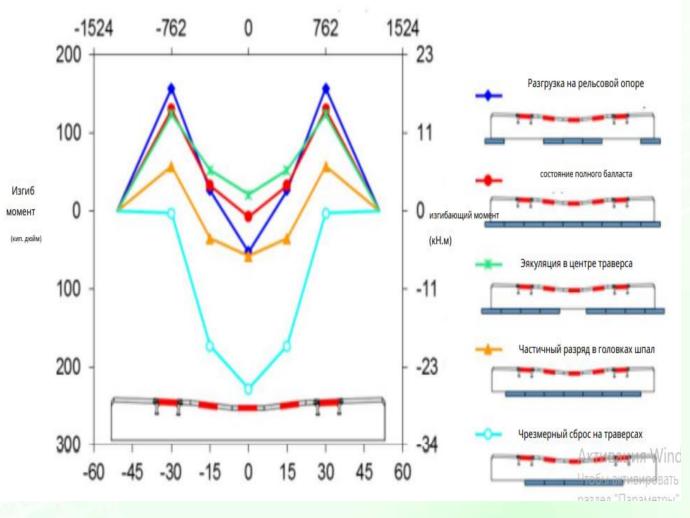
- ЗЕМЛЯНОЕ ПОЛОТНО, ЕГО ВОДООТВОДНЫЕ, ПРОТИВОДЕФОРМАЦИОННЫЕ, ЗАЩИТНЫЕ И УКРЕПИТЕЛЬНЫЕ СООРУЖЕНИЯ, РАСПОЛОЖЕННЫЕ В ПОЛОСЕ ОТВОДА;
- ИСКУССТВЕННЫЕ СООРУЖЕНИЯ.

КОНСТРУКЦИЯ ВЕРХНЕГО СТРОЕНИЯ ПУТИ ДОЛЖНА ОБЕСПЕЧИВАТЬ:

1) РАВНОМЕРНОЕ РАСПРЕДЕЛЕНИЕ НА ЗЕМЛЯНОЕ ПОЛОТНО И ИСКУССТВЕННЫЕ СООРУЖЕНИЯ НАГРУЗКИ ОТ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА;

2) СТАБИЛЬНОСТЬ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ РЕЛЬСОВОЙ КОЛЕИ.


3) ПРОЧНОСТЬ И НАДЕЖНОСТЬ ВСЕХ СОСТАВНЫХ ЭЛЕМЕНТОВ, А ТАКЖЕ УСТОЙЧИВОСТЬ РЕЛЬСОШПАЛЬНОЙ РЕШЕТКИ ОТ СДВИГА В ГОРИЗОНТАЛЬНОЙ И ВЕРТИКАЛЬНОЙ ПЛОСКОСТЯХ ПОД ВОЗДЕЙСТВИЕМ ВНЕШНИХ И ВНУТРЕННИХ СИЛ.


Шпалы

- На участках пути должны применяться железобетонные шпалы.
- Эпюры шпал на путях линий 1 3-го классов должны быть:
- в прямых и в кривых радиусом более 1200 м 1840 шт./км,
- радиусом 1200 м и менее 2000 шт./км;
- на путях 4 5-го класса:
- в прямых и кривых радиусом более 1200 м 1600 шт./км,
- радиусом 1200 м и менее 1840 шт./км.

В ЗАВИСИМОСТИ ОТ КОНСТРУКЦИИ, ЖЕЛЕЗОБЕТОННЫЕ ШПАЛЫ МОГУТ ВОСПРИНИМАТЬ РАЗЛИЧНЫЕ ТИПЫ НАГРУЗОК, ВКЛЮЧАЯ <u>ВЕРТИКАЛЬНЫЕ, ГОРИЗОНТАЛЬНЫЕ И БОКОВЫЕ</u>. ОНИ СПОСОБНЫ ВЫДЕРЖИВАТЬ СИЛЫ, ВОЗНИКАЮЩИЕ ВО ВРЕМЯ ДВИЖЕНИЯ ПОЕЗДОВ, ВКЛЮЧАЯ ТЯЖЕЛЫЕ ГРУЗОВЫЕ СОСТАВЫ С ВЫСОКОЙ ОСЕВОЙ НАГРУЗКОЙ.

ЖЕЛЕЗОБЕТОННЫЕ ПОДРЕЛЬСОВЫЕ ОСНОВАНИЯ

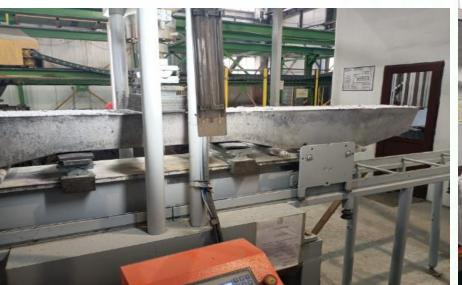
В КАЧЕСТВЕ ЖЕЛЕЗОБЕТОННОГО ПОДРЕЛЬСОВОГО ОСНОВАНИЯ МОГУТ ПРИМЕНЯТЬСЯ РАЗЛИЧНЫЕ ПО ФОРМЕ И РАЗМЕРАМ КОНСТРУКЦИИ. К ТАКИМ КОНСТРУКЦИЯМ ОТНОСИТЬСЯ ШПАЛЫ, ПЛИТЫ, ЛЕЖНИ, РАМЫ. ИЗ УКАЗАННЫХ ВИДОВ ПОДРЕЛЬСОВЫХ ОСНОВАНИЙ НАИБОЛЬШЕЕ РАСПРОСТРОНЕНИЕ КАК В КАЗАХСТАНЕ, ТАК И ЗА РУБЕЖОМ ПОЛУЧИЛИ ШПАЛЫ ИЗ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОГО ЖЕЛЕЗОБЕТОНА.

ОТЛИЧИТЕЛЬНАЯ ОСОБЕННОСТЬ ШПАЛ ОТ ДРУГИХ ВИДОВ ПОДРЕЛЬСОВОГО ОСНОВАНИЯ СОСТОИТ В ТОМ, ЧТО ОНИ РАБОТАЮТ НА ИЗГИБ, КАК БАЛКА УПРУГОМ ОСНОВАНИИ ПОД НАГРУЗКОЙ, ПРИЛОЖЕННОЙ В ДВУХ ФИКСИРОВАННЫХ ТОЧКАХ.

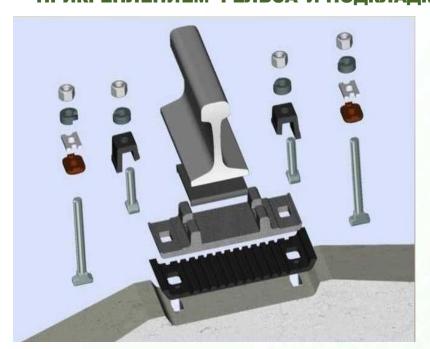
РАБОТОСПОСОБНОСТЬ РЕЛЬСОВОГО ПУТИ НА ШПАЛАХ ПРОВЕРЕНА ДОЛГОЛЕТНИМ ОПЫТОМ.

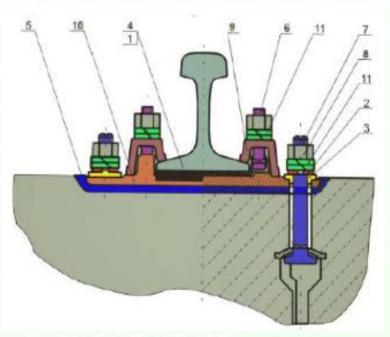
НА СЕГОДНЯШНИЙ ДЕНЬ ОГРОМНОЕ ПРЕДПОЧТЕНИЕ ОТДАЕТСЯ ВСЕ ЖЕ ЖЕЛЕЗОБЕТОННЫМ ШПАЛАМ (БРУСЬЯМ), КОТОРЫЕ ПРЕДСТАВЛЯЮТ СОБОЙ БАЛКУ С ПЕРЕМЕННЫМ СЕЧЕНИЕМ С ПЛОЩАДКОЙ ДЛЯ УСТАНОВКИ РЕЛЬСОВ И ОТВЕРСТИЯМИ ДЛЯ СКРЕПЛЕНИЯ КОНСТРУКЦИИ БОЛТАМИ.

СОВРЕМЕННЫЕ ШПАЛЫ ВЫПОЛНЯЮТ ПУТЕМ ЗАПОЛНЕНИЯ ФОРМЫ БЕТОНОМ, В КОТОРУЮ ПОМЕЩЕНА АРМАТУРА, СОЗДАЮЩАЯ РАСТЯГИВАЮЩЕЕ УСИЛИЕ, ЧТОБЫ ЖЕЛЕЗНОДОРОЖНЫЙ ПУТЬ БЫЛ НАДЕЖНЫМ И ИЗНОСОСТОЙКИМ. ТАКИЕ ШПАЛЫ ОТЛИЧАЮТСЯ НЕОГРАНИЧЕННЫМ СРОКОМ СЛУЖБЫ, ИМЕЮТ ВЫСОКУЮ МЕХАНИЧЕСКУЮ ПРОЧНОСТЬ И НЕ ПОДВЕРГАЮТСЯ ГНИЕНИЮ.



ВТОРОЙ ЕВРАЗИЙСКИЙ ИННОВАЦИОННЫЙ ФОРУМ «АКТУАЛЬНЫЕ ПРОБЛЕМЫ ЗАСТРОЙКИ И БЕЗОПАСНОСТИ КРУПНЫХ ГОРОДОВ»

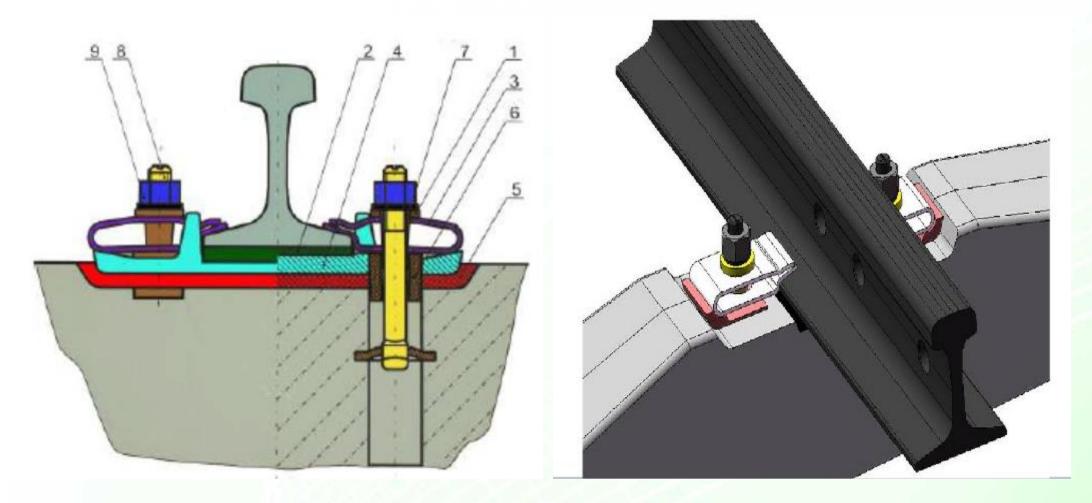




КЛАССИФИКАЦИЯ ЖЕЛЕЗОБЕТОННЫХ ШПАЛ ПО ТИПАМ И ОСНОВНЫЕ ПАРАМЕТРЫ

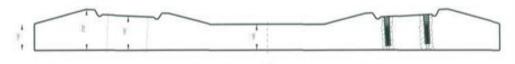
-ПО ВИДУ РЕЛЬСОВОГО СКРЕПЛЕНИЯ; -ПО ВИДУ НАПРЯГАЕМОЙ АРМАТУРЫ; -ПО НАЛИЧИЮ ЭЛЕКТРОИЗОЛИРУЮЩИХ СВОЙСТВ;

ЖЕЛЕЗОБЕТОННЫЕ ШПАЛЫ, ПРИМЕНЯЕМЫЕ НА ЖЕЛЕЗНЫХ ДОРОГАХ АО «НК «ҚТЖ», В ЗАВИСИМОСТИ ОТ ТИПА ПРОМЕЖУТОЧНОГО РЕЛЬСОВОГО СКРЕПЛЕНИЯ, ПОДРАЗДЕЛЯЮТСЯ НА:
- ТИП $\underline{\text{Ш 1}}$ – ДЛЯ РАЗДЕЛЬНОГО КЛЕММНО-БОЛТОВОГО РЕЛЬСОВОГО СКРЕПЛЕНИЯ КБ-65 С РЕЗЬБОВЫМ ПРИКРЕПЛЕНИЕМ РЕЛЬСА И ПОДКЛАДКИ К ШПАЛЕ.


Ш1 Раздельное клеммно-болтовое рельсовое скрепления КБ-65

ТИП <u>Ш 2 —</u> ДЛЯ НЕРАЗДЕЛЬНОГО КЛЕММНО-БОЛТОВОГО РЕЛЬСОВОГО СКРЕПЛЕНИЯ БПУ С БОЛТОВЫМ ПРИКРЕПЛЕНИЕМ ПОДКЛАДКИ И РЕЛЬСА К ШПАЛЕ;

Ш2Нераздельное клеммно-болтовое рельсовое скрепления БПУ с болтовым прикреплением подкладки и рельса к шпале


■ ТИП <u>Ш 3 ДЛЯ НЕРАЗДЕЛЬНЫХ РЕЛЬСОВЫХ СКРЕПЛЕНИЙ (ЖБР-65),</u> С РЕЗЬБОВЫМ БОЛТОВЫМ (ЖБР-65) ПРИКРЕПЛЕНИЕМ РЕЛЬСА К ШПАЛЕ;

ШЗНераздельное рельсовое скрепление ЖБР-65

шпала железобетонная предварительно напряженная типа ШЗ-Д шурупно-дюбельного скрепления жбр-65ш

Техническая характеристика

Длина, мм	2700		
Ширина, мм	300		
Масса, кг	270		
Объем бетона, м3	0,108		
Класс бетона	B40		
Морозостойкость	F200		
Армирование	проволока Ø 3		

ШЗ-Д — для бесподкладочного и подкладочного нераздельного шурупно-дюбельного скрепления ЖБР-65Ш с шурупным прикреплением рельса к шпале.

арматура 9,6/10

Подтипы **Ш3-Д 4х10, Ш3-СД** – шпалы, армированные стержневой арматурой диаметром 9,6 мм, изготавливаемые на автоматизированных технологических линиях «OLMI».

Применение:

Прямые участки пути и кривые радиусом более 350 м на всех железнодорожных линиях в главных, станционных и прочих путях, а также подъездных путях промышленных предприятий с шириной колеи 1520 мм, по которым обращается типовой подвижной состав общей сети железных дорог под осевую нагрузку до 25 тн.

В кривых участках пути радиусом от 349 м до 300 м и менее с шириной рельсовой колеи в круговых кривых 1530 мм (ШЗ-ДК).

На мостах (тоннелях) с элементами для прикрепления охранных приспособлений (ШЗ-ДМ) и на мостах (тоннелях) с элементами для прикрепления охранных приспособлений, где требуется обустройство челноков (ШЗ-ДЧ).

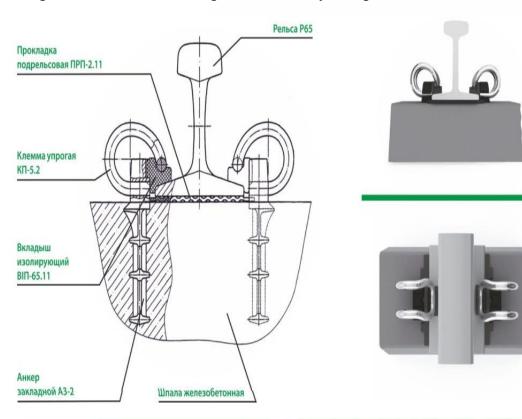
шпала железобетонная предварительно напряженная типа Ш5-ДФ под рельсовое скрепление типа w30 «фоссло»

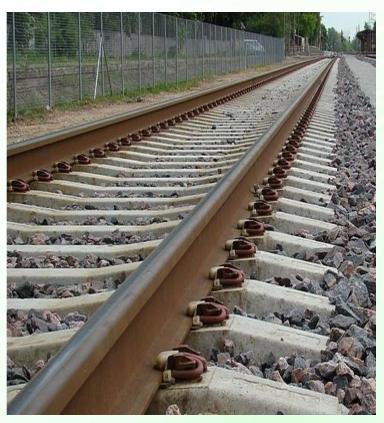
Техническая характеристика

Длина, мм	2700	
Ширина, мм	300	
Масса, кг	276	
Объем бетона, м	0,11	
Класс бетона	B40	
Морозостойкость	F200	
Армирование	проволока Ø 3 м	

Ш5-ДФ — для бесподкладочного нераздельного шурупно — дюбельного скрепления типа W30 VOSSLOH с шурупным прикреплением рельса к шпале.

Применение:


Прямые участки пути и кривые радиусом более 350 м на всех железнодорожных линиях в главных, станционных и прочих путях, а также подъездных путях промышленных предприятий с шириной колеи 1520 мм, по которым обращается типовой подвижной состав общей сети железных дорог под осевую нагрузку до 25 тн.



■ ТИП <u>Ш 4 – ДЛЯ НЕРАЗДЕЛЬНЫХ АНКЕРНЫХ РЕЛЬСОВЫХ СКРЕПЛЕНИЙ КПП-5 И PANDROL FASTCLIP C</u> БЕЗРЕЗЬБОВЫМ ПРИКРЕПЛЕНИЕМ РЕЛЬСА К ШПАЛЕ, СОГЛАСНО СТ 36135-1910-ТОО-14 И СТ ТОО 39373697-18.

СКРЕПЛЕНИЯ ПРМОЖЕТУЧНОЕ УПУРОГЕ ТИПА КПП-5 и PANDROL FASTCLIP предназначенное для укладки в бессытоковой путь на прямых и кривых участках пути радиусом не менее 350 м (в том числе и в рамках переходных кривых) с железобетонными шпалами, с грузонапряжённостью до 60 мл.тктм/брутто в год, на которых максимальная скорость движения пассажирских поездов не превышает 160 км/ч, грузовых — (90 км/ч). Скрепления должны закрепляться в пути с рельсами типа Р65.

Ш4 Нераздельные анкерные рельсовые скрепления КПП-5 и Pandrol Fastclip с безрезьбовым прикреплением

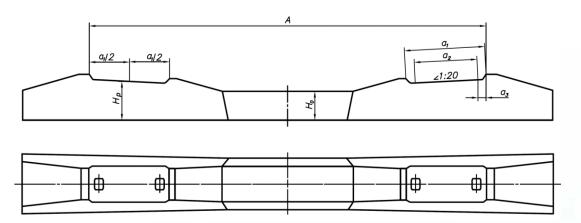


Схема железобетонных шпал типов Ш 1 и Ш 2

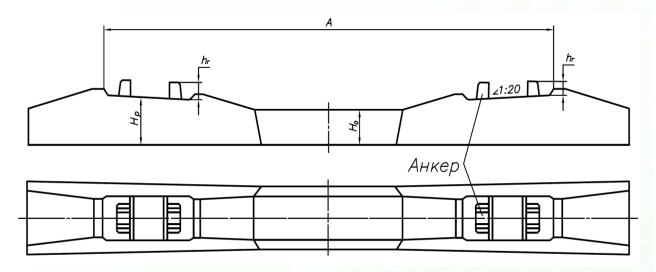
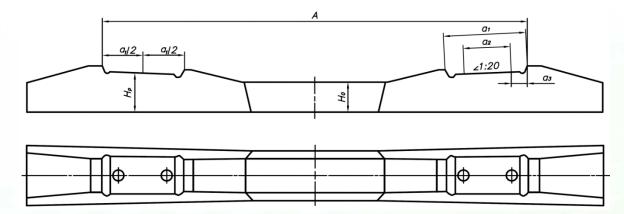



Схема железобетонных шпал типа Ш 4

Схема железобетонных шпал типов Ш 3

Значения поправки (ΔA) к расстоянию S для шпал, укладываемых в кривых участках железнодорожного пути

Участок железнодорожного пути	Ширина рельсовой колеи 1520 мм		Обозначение поправки
	S	ΔA	K
Круговые кривые радиусом 350 ми более	1520	0	-
Пер ех одные кривые	1522	2	К22
	1524	4	К24
	1526	6	К26
	1528	8	К28
Круговые кривые радиусом от 349 до 300 м	1530	10	К30
Переходные кривые	1532	12	К32
Круговые кривые радиусом 299 ми менее	1535	15	K35

Примечание – В таблице используются следующие условные обозначения:

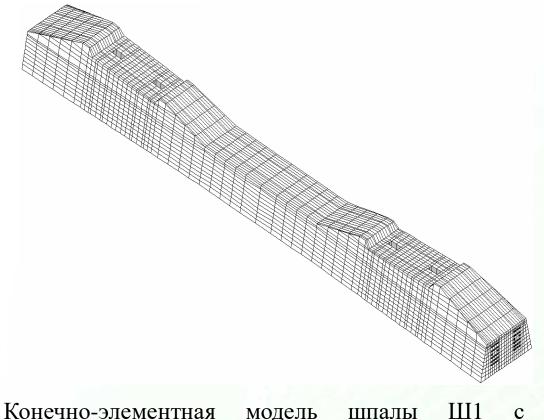
S— номинальная ширина рельсовой колеи, в мм,

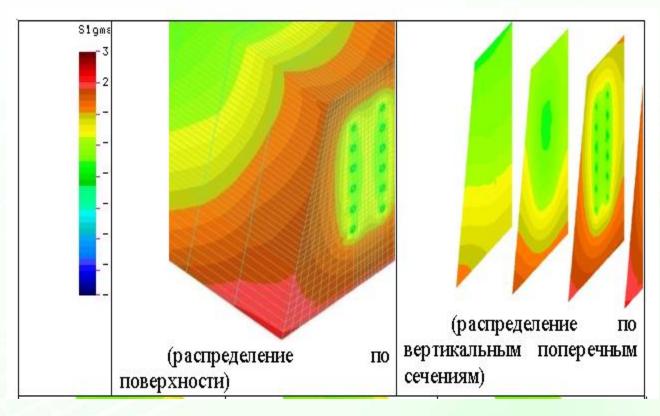
ΔА – поправка к расстоянию А, мм;

К – обозначение поправки на шпале.

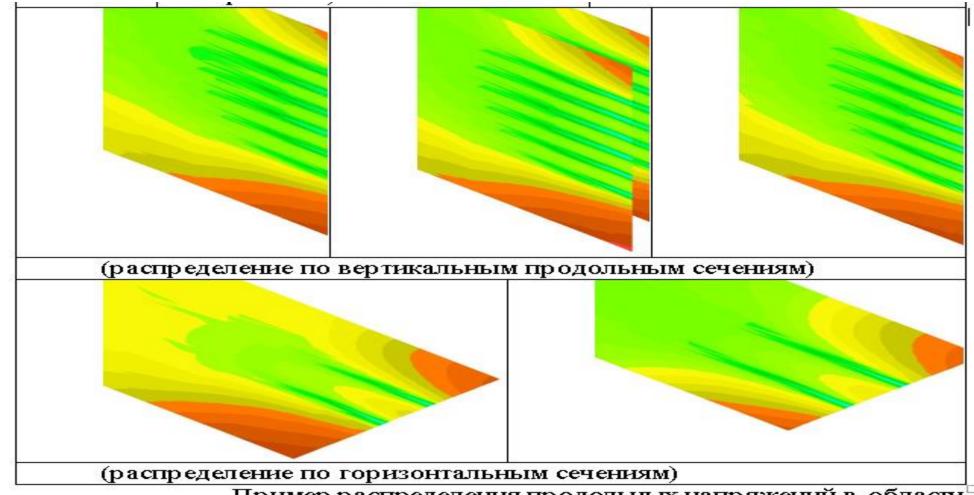
ИСПОЛЬЗОВАНИЕ СОВРЕМЕННЫХ ПРОГРАММНЫХ КОМПЛЕКСОВ NASTRAN, COSMOS/M, ANSYS, ADAMS И МОЩНЫХ ЭВМ ПОЗВОЛЯЕТ ВЫПОЛНИТЬ ПОЧТИ ВСЕ ТРЕБОВАНИЯ ПОЛНОГО ПОДОБИЯ ПРИ ИСПОЛЬЗОВАНИИ ЧИСЛЕННЫХ МЕТОДОВ РАСЧЕТОВ.

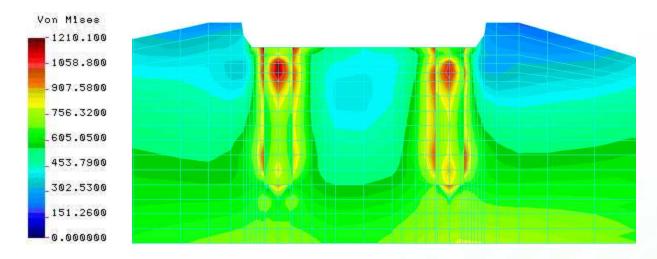
МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ ЯВЛЯЕТСЯ ОДНОЙ ИЗ РАЗНОВИДНОСТЕЙ ЧИСЛЕННЫХ МЕТОДОВ В МЕХАНИКЕ СПЛОШНЫХ СРЕД И ИСПОЛЬЗУЕТСЯ ДЛЯ РЕШЕНИЯ ЗАДАЧ, ОПИСЫВАЕМЫХ РАЗНЫМИ ТИПАМИ УРАВНЕНИЙ И ИХ КОМБИНАЦИЙ, СВЯЗАННЫХ С РАССМОТРЕНИЕМ В КОНЕЧНОМ ЧИСЛЕ ТОЧЕК ВЕЛИЧИН, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ СИСТЕМЫ.


ЭТИ ВОЗМОЖНОСТИ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ (МКЭ) ДЕЛАЮТ ЦЕЛЕСООБРАЗНЫМ ЕГО ПРИМЕНЕНИЕ ПРИ РАЗРАБОТКЕ НОВЫХ КОНСТРУКЦИЙ ЖЕЛЕЗОБЕТОННЫХ ШПАЛ.

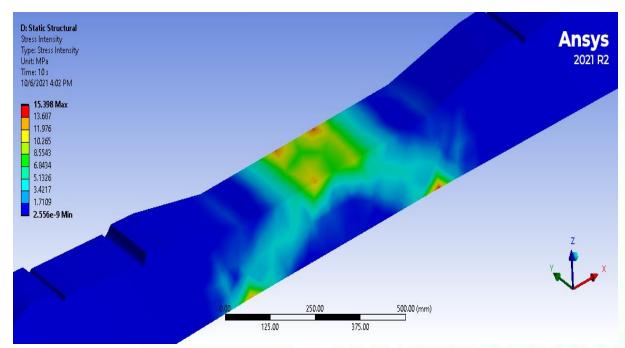

БОЛЬШОЙ ВКЛАД В ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ МЕТОДА МКЭ В ЖЕЛЕЗНОДОРОЖНОМ ДЕЛЕ ВНЕСЕН Н.Н. ШАПОШНИКОВЫМ (МИИТ) И КАФЕДРОЙ "СТРОИТЕЛЬНАЯ МЕХАНИКА" СИБИРСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ПУТЕЙ СООБЩЕНИЯ (М.Х. АХМЕТЗЯНОВ, С.П. ВАСИЛЬЕВ), И НАУЧНО-ИНЖЕНЕРНЫМ ЦЕНТРОМ ГОРЬКОВСКОЙ ЖЕЛЕЗНОЙ ДОРОГИ (Э.П.ИСАЕНКО И М.В.БЕЗРУКОВ).

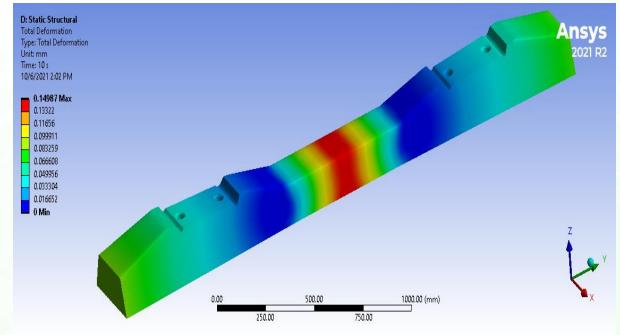
МОДУЛИ СИСТЕМЫ ДЛЯ РАСЧЕТНОГО АНАЛИЗА КОНСТРУКЦИЙ ПО МЕТОДУ КОНЕЧНЫХ ЭЛЕМЕНТОВ - COSMOS/M


ОЦЕНКА РАСПРЕДЕЛЕНИЯ ВНУТРЕННИХ НАПРЯЖЕНИЙ В ЖЕЛЕЗОБЕТОННЫХ ШПАЛАХ


конечно-элементная модель шпалы што отверстиями под закладные болты

Пример распределения продольных напряжений в области заанкеривания арматуры.


Распределение напряжений Мизеса в шпале при испытаниях на вырывание болтов из шпалы (6тс/болт вверх).



Распределение вертикальных напряжений в балласте по подошве шпалы типа Ш1 (стабилизированный балласт, вертикальная нагрузка 10тс на узел скрепления)

РАСТЯГИВАЮЩИЕ И СЖИМАЮЩИЕ НАПРЯЖЕНИЕ НА ЖЕЛЕЗОБЕТОННОМ ШПАЛЕ ПОКАЗЫВАЕТ ПРОЧНОСТИ И УСТОЙЧИВОСТИ

Расчёт железобетонных шпал с использованием метода конечных элементов в ANSYS и COSMOS/M предоставляет ряд преимуществ, которые делают такой подход выгодным и целесообразным, особенно при проектировании и эксплуатации железнодорожных путей:

1.Повышение надёжности и безопасности: Точный анализ напряжений и деформаций помогает обнаружить потенциальные проблемные зоны в дизайне шпалы до начала её производства и эксплуатации. Это снижает вероятность аварий и увеличивает общую безопасность железнодорожного движения.

2.Оптимизация материалов: МКЭ позволяет точно рассчитать, какие материалы и в каком объёме следует использовать для достижения требуемых характеристик шпалы без излишних затрат. Это ведет к экономии на материалах при сохранении или даже улучшении качества конструкции.

3.Уменьшение эксплуатационных расходов: Повышение долговечности шпал за счёт более точного проектирования приводит к снижению частоты и объёма необходимого ремонта и замены, что экономит

ресурсы в долгосрочной перспективе.

4.Инновационные решения: Использование МКЭ позволяет исследовать новые конструктивные решения и материалы, такие как добавление волокон или использование новых видов бетонной смеси, что может привести к улучшению эксплуатационных характеристик и снижению затрат.

5.Сокращение времени на проектирование и испытания: Быстрый и точный анализ возможных конструкций с помощью ANSYS сокращает общее время, необходимое для разработки и испытаний новых

типов шпал, ускоряя процесс внедрения инноваций и обновлений.

Использование метода конечных элементов для расчёта железобетонных шпал, таким образом, не только повышает безопасность и эффективность железнодорожной инфраструктуры, но и способствует более рациональному использованию ресурсов, что делает такие технологии весьма выгодными для железнодорожной отрасли.

