

Расчет и моделирование сейсмических воздействий для проектных основ и строительства

О.В. Павленко Институт физики Земли им. О.Ю. Шмидта, olga@ifz.ru

Требуется корректная оценка интенсивности сотрясений, пиковых ускорений, пиковых скоростей и смещений, длительности воздействий, спектрального состава колебаний

Лаборатория 306 Инженерной сейсмологии и интерпретации сейсмических наблюдений

Развитие фундаментальных основ инженерной сейсмологии, создание расчетных основ для изучения проявлений основных типов сейсмичности: коровой, субдукционной, и стабильных континентальных плит — в регионах России

Задачи:

- 1. Изучение особенностей излучения и распространения сейсмических волн (по оценкам сброшенных в очагах напряжений, добротности среды, типичным локальным эффектам) в различных регионах России: на Северном Кавказе, Урале, в Байкальской рифтовой зоне, Алтае-Саянском регионе и др.
- 2. Накопление данных по сильным движениям, создание баз данных, стохастическое моделирование акселерограмм сильных землетрясений....

MM HM CEPCERAHOR

научно-исследовательский центр

Joint Working Group of the Effect of Surface Geology on Seismic Motion (JW-ESG)

Развитие сетей сейсмических наблюдений, накопление и анализ сейсмических данных в последние десятилетия привели к существенному прогрессу в изучении очагов землетрясений, среды распространения сейсмических волн и локальных эффектов

Компромиссные/устаревшие подходы:

Оценивание сейсмических воздействий в зонах с умеренной и слабой сейсмичностью на основе изучения параметров колебаний грунта в районах с высокой сейсмичностью

Использование акселерограмм общей базы данных по сильным движениям (Банка геофизических данных ИФЗ АН СССР) для оценки параметров сейсмических воздействий в конкретном регионе

Пересчет акселерограмм сильных движений на различные грунтовые условия (метод тонкослоистых сред, слабая нелинейность)

Москва, Наука, 1980

Уравнение макросейсмического поля Блейка-Шебалина

$I = aM_s - b$) Ig(H ² +	$R^{2})^{0,5}$	+ C
----------------	------------------------------	----------------	-----

	Коэффициенты					
Сеисмический район	a	b	С			
Калининградская область	1,4	2,7	3,4			
Северный Кавказ	1,6	3,1	2,2			
Дагестан	1,5	3,6	3,1			
Прибайкалье	1,5	4,0	4,0			
Камчатка	1,5	2,6	2,5			
Курильские острова	1,5	4,5	4,5			
Сахалин	1,6	4,3	3,3			
Пр и м е ч а н и е – Значения коэффициентов могут						
различаться в различных направлениях						

Метод сейсмических жесткостей (МСЖ) [Медведев, 1962]

 В 1960-70-х исследования динамического поведения грунтов стали приоритетным направлением научных исследований в США, где в то время приступили к строительству сети атомных станций

Анкоридж: 27 марта 1964, M = 9.1 Ниигата: 16 июня 1964, M = 7.5

Методы расчета отклика грунта (1970-80-е): эквивалентный линейный анализ: SHAKE, QUAD-4, FEADAM, LUSH, FLUSH, FDEL,... нелинейный анализ: DESRA, TARA, CHARSOIL, TESS1, MASH, NONLI3,...

Hardin, Drnevich, 1972

Успехи сейсмологии последних десятилетий нашли отражение в строительных нормах США, Японии, стран Евросоюза

 После катастрофического землетрясения в Кобе 17 января 1995 в Японии развернуты сети сильных движений K-NET – более 1000 наземных акселерометров и KiK-net – более 700 вертикальных групп

PLOT ACCESS 0010205740

Strong¹motion

ograph Network p Page This is a unified Website for K-NET and KiK-net, the NIED strong-motion seismograph networks. Strong-motion data are availab from the download pages listed in the membar above. For first-time visitors, pleate see an <u>introduction of K-NET and KiK-net</u>. For First-time Visitor Link to Realtime ground-motion monitoring system (Kyo 1. Realtime ground-motion monitoring system K-NET is a network of strong-motion seismographs installed at approximately 1,000 locations nationwide. KiK-net consists of pairs of strong-motion seismographs installed in a borehole and on the ground surface About User Registration ground-motion monitoring system User registration is required to download strong-motion data. chin monitor) #1 Easy Download altime ground-motion monitoring system You can download the strong-motion data in the simplest way from this page. New Realtime ground-motion monitoring system (Tes NET & Kik-net Data Due to the Latest Ear

> 2016/03/24-16:57:00:00 43:30N 145:50E 100km M4:2 -- Details Donmiced All Date

NEW New Realtime ground-motion monitoring syste

4-th International Conference on Seismic Zonation, Stanford, California, USA, 1991

5-th International Conference on Seismic Zonation, Nice, France, 1995

2-d International Symposium on the Effects of Surface Geology on Seismic Motion, Japan, Yokohama, 1998

6-th International Conference on Seismic Zonation, Palm Springs, California, USA, 2000

3-d International Conference on Earthquake Geotechnical Engineering, Berkeley, California, USA, 2004

«Сообщество пользователей карт сейсмического районирования разнообразно, и требуемые параметры сильных движений также разнообразны. Непрактично готовить многоцелевые карты районирования для удовлетворения всех их нужд.

Нам представляется следующая процедура в будущем.

Поскольку любой параметр может быть получен из акселерограмм, мы должны рассчитывать акселерограммы для заданных пар источник–приемник с использованием современных методов на основе современных знаний об очагах землетрясений, параметрах пути распространения и локальных условиях в точке приема».

> Aki, K., K. Irikura Characterization and mapping of earthquake shaking for seismic zonation, *Proc 4th Int. Conf. on Seismic Zonation*, *August 25-29, 1991, Stanford, California*, 1, 61-110.

В спектр колебаний в данной точке Y дают вклад очаг E, путь P и локальные эффекты G: $Y(M_{o'}R,f) = E(M_{o'}f) P(R,f) G(f)$

где *M_o* - сейсмический момент, *R* – расстояние от источника, и *f* - частота (Boore, 2003)

Характеристики очага и пути распространения имеют региональные особенности

МОДЕЛИ ОЧАГА:

детерминистские

Колебания поверхности при землетрясении результат пространственно-временной конволюции функции подвижки в очаге с функцией Грина, представляющей отклик земной среды (Аки, Ричардс, 1980)

Обратная задача: (Kikuchi, Kanamori, 1982; Ruff, Kanamori, 1983; Archuleta, 1984; Hartzell, Heaton, 1985, 1986; etc.)

стохастические

Колебания поверхности при землетрясении - случайный шум, ограниченный по частоте в полосе от корнер-частоты f_0 до верхней частоты f_{max} ; форма спектра определяется по закону масштабирования (Brune, 1970,1971) сейсмическим моментом M₀ и параметром напряжения Δσ

 $f_0 = 4.9 \ 10^6 \ V_s \ (\Delta \sigma / M_0)^{1/3}$

Δσ зависит от региона, М, типа подвижки, глубины очага,...

Модель (Aki, 1967; Hanks, McGuire, 1981) широко используется как основа для предсказания амплитудных спектров и пиковых скоростей сильных движений в инженерных приложениях

Землетрясение в Чи-Чи (Тайвань) 1999

ЭФФЕКТЫ ПУТИ *P(R,f)*

Могут быть описаны простыми функциями для учета:

геометрического расхождения волн,

(fr2, Qr2)

ft2

10⁰

функциями

10¹

(fr1, Qr1

10⁻¹

10⁻²

- затухания (неупругого поглощения и рассеяния)
- увеличения длительности сигнала с расстоянием из-за эффектов распространения и рассеяния

 $P(R, f) = Z(R)exp\{-\pi fR/Q(f)\beta\}$

Неупругое поглощение и рассеяние Q(f) может быть оценено по записям слабых землетрясений

по результатам исследований

Синтетические сейсмограммы для 4-слойной модели коры в центральных США: реверберация в земной коре (Herrmann, 2000)

Волновые формы усложняются в реальности из-за горизонтальной неоднородности коры и рассеяния на случайных неоднородностях

РАСЧЕТ ОТКЛИКА ГРУНТА ПРИ СЕЙСМИЧЕСКИХ ВОЗДЕЙСТВИЯХ

- Полевые и лабораторные методы дают лишь ограниченную информацию о динамических свойствах грунтов. Наиболее перспективный подход – интерпретация наблюдений поведения грунтов in situ
- Грунты многофазные среды, но в сейсмологии они рассматриваются как сплошные и описываются диаграммами сжатия и сдвига, учитывающими содержание и свойства их компонентов.
- Зависимости напряжение-деформация это модели поведения грунтов в условиях динамического нагружения
- При расчете отклика грунта нужно стараться по возможности наиболее полно учесть все факторы, влияющие на его напряженно–деформированное состояние, применяя теоретические положения и эмпирические соотношения и параметры

Грунтовые слои существенно изменяют как уровень, так и спектральный состав колебаний на поверхности

Фундамент

Механизмы преобразований сейсмических волн в грунтовых слоях:

Подвижка

- □ Переход сейсмических волн в верхние слои с меньшими значениями *V_s* и *ρ* ведет к их усилению, в соответствии с законом сохранения плотности потока сейсмической энергии
- Резонансные колебания в грунтовых слоях также приводят к усилению сейсмических волн
- Нелинейность зависимости напряжение-деформация в грунтах приводит к снижению амплитуд сейсмических колебаний

Эквивалентный линейный анализ: SHAKE, QUAD-4, FEADAM, LUSH, FLUSH, FDEL,... Нелинейный анализ: DESRA, TARA, CHARSOIL, TESS1, MASH, NONLI3,...

1. Усиление сейсмических волн в грунтовых слоях

Землетрясение 17 октября 1989 г. в Лома Приета (США) (М ~ 7.1, r ~ 100 км)

MMI ShakeMap for the 1989 earthquake determined from seismic recordings

2. Резонансные явления в грунтовых слоях: двойной резонанс, в грунтах и в зданиях

7 декабря 1988 г. (М ~ 7.0)

Разрушены более 300 населенных пунктов: Спитак, Ленинакан, Степанаван,

Кировакан и др.; Погибло более 25 000 человек

В Ленинакане разрушены здания, периоды собственных колебаний которых ~ 0,3 – 0,9 с совпали с периодами собственных колебаний подстилающих грунтов - суглинков с туфами и супесями *h* ~ 20-70 м

«Тройной эффект» (Б.К. Карапетян, предс. Пробл. совета по сейсмологии и сейсм. строительству АН АрмССР): ослабленный грунт (из-за активного строительства) + резонанс в грунтах и в зданиях + плохое качество строительства

Глубина, м 3. Нелинейность поведения грунта. Разжижение Компонента NS 2014 0 -5:00 2 STRESS 3 9 0' 15 а, м/с ² Компонента NS 6 2.0 PR4-0 M REDUCED STRAIN 7 8,5 Искусственный гравелистый 9,5 грунт 111. 5:47:17 5,47.22 5:48:57 5:47:02 5:47:07 5:47:12 -15 ллювиальные слины 12 -20 PR3-16 M 4E+4 -25 13 Аллювиальные 1504E-3 14.5 -35 -40 Делювиальны 15,5 гравий -45 -50 ÍV, 17 5:47:22 5:46:57 6:47:02 5:47:07 5:47:12 5:47:17 -55 18 PR2-32 M -60 -65 Депюеиальные 21 плины -70 23 -75 Делювиальны 25 and a second state 0.1 1 18+1 18+2 18+3 18+4 27,5 5:46:57 5:47:17 5:47:22 5:47:02 5:47:12 5:47:00 Порт Айленд 28 PR1-83 M входной сцянал 29 29,5 5:46:57 6:47:32 5:47:17 5:47:22 5:47:02 5:47:07 1 2 3 4 5 6 7 8 9 10 Время 31 31,5 Землетрясение в Кобе 1995 г. 6E+4 32 М~6.8, Порт Айленд 6E-306E-37 39,5 35+4 44,5 -RE-308E-3 47 52 54 Новая Зеландия, Крайсчерч 58 22 февраля 2011 г. М = 6.3 60 5:47:10 BDews 5:47:15 5:47:00 5:47:05

Различия региональных характеристик излучения и распространения сейсмических волн на территории России: нет единой формулы связи балла с пиковым ускорением

Пиковые ускорения (PGA) при фиксированных магнитуде и расстоянии М и R сильно различаются от региона к региону (субдукционные и коровые землетрясения):

Камчатка – Кавказ – в 10-15 раз

- 🖵 модель затухания
- глубинная скоростная структура от нижней границы земной коры или литосферной плиты до сейсмического фундамента (V_s=3 км/с) получена томографией для всей Японии
- структура осадочного слоя от сейсмического фундамента до инженерного фундамента (V_s=400-700 м/с) построена 3-мерная структурная модель для всей Японии
- строение приповерхностного грунта от инженерного фундамента до поверхности по сетке с шагом 1 км оценивается коэффициент усиления грунта по данным о средней V_s в верхних 30 м)

Коэффициенты усиления сейсмических волн в грунтах по данным поверхностной геологии и геоморфологии

Япония: Рассчитываются сильные движения при сценарных землетрясениях (SESM)

СЕЙСМИЧЕСКОЕ РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Вероятностные карты нового поколения ОСР-97 для периодов повторяемости землетрясений 500, 1000 и 5000 лет

Пространственное распределение грунтовых толщ на территории России Инженерная геология России т. 1 Грунты России. ред. В.Т. Трофимов, Е.А. Вознесенский, В.А. Королев. М., 2011

Скальные грунты занимают огромные пространства Восточной Сибири, Забайкалья и Дальнего Востока. В европейской части имеют ограниченное распространение на Большом Кавказе, в осевой части Урала, на востоке Кольского полуострова

1 – преим. скальные, 2 – глинистые, 3 – лессовые, 4 – песчаные, 5 – глинистые с обломочным материалом, 6 – глинистые с лессовым слоем в ВЧР, 7 – песчано-глинистые с преобладанием глинистых в ВЧР, 8 – песчано-глинистые с преобладанием песчаных в ВЧР, 9 – торфяные подстилаемые грунтами разного состава, 10 – глинистые подстилаемые скальными, 11 – песчаные, подстилаемые скальными

I – слабоувлажненные, II - увлажненные, III - сильноувлажненные, IV – льдистые, V – сильнольдистые, VI – льдистые и увлажненные, VII – сильноувлажненные, льдистые и сильнольдистые, VIII,IX,X– границы распространения

Акселерограммы землетрясения 13.11. 1993 на ст.

РЕТ и спектры Фурье: NS, EW, модель

Курило-Камчатская зона

(субдукционные землетрясения)

"Грунтовые" станции AER, DCH, INS

MMMMMMMMMMMMMMM

4 h Mar

#1.1k/ww

di Mary

Winner

MALA

·**

S(f)

100.0

10.0

S(f)

100.

100.0

Time, s

Напряжения, бар 0.6 0.8 1.0

Пирокластические породы покрыли половину территории современного Петропавловска-Камчатского слоем 100-200-м после 2-х катастрофических извержений взрывного типа Пра-Авачинского вулкана 30000-45000 лет назад (Мелекесцев и др. 1991).

Происхождение грунтов объясняет их однородность

Кольский полуостров и Карелия (сейсмичность стабильных континентальных плит)

Характеристики излучения и распространения сейсмических волн оцениваются по записям местных землетрясений

Северный Кавказ (коровые землетрясения)

Зона I: окрестности г. Сочи (r > 35 km)

Оценивание локального усиления, параметра карра к, длительности, формы окна

Система управления базой данных по сильным движениям СУБД

Первичная обработка 3-компонентных записей землетрясений для удаления аппаратных искажений, шумов и определения полосы частот полезного

Преобразование «сырых» записей к формату базы данных спектров реакции, с набором характеристик: магнитуд, расстояний и др. для построения уравнений прогноза движений грунта (УПДГ)

Изучение особенностей излучения и распространения сейсмических волн в Уральском регионе, уточнение уравнений прогноза движений грунта

	Дата	Широта	Долгота	<i>h</i> , км	<i>r</i> _h , гр.	$m_b(M_w)$	r_h , KM
1	4.09.2018	54.8088	57.9818	10	1.65	(5.0)	177.5
2	28.05.1990	55.1451	58.6259	10	1.29	4.5(4.66)	137.9
3	28.05.1990	55.1695	58.7173	33	1.26	4.5(4.66)	139.1
4	15.11.2018	54.803	58.0397	10.0	1.6	4.4(4.6)	171.2
5	29.09.2018	54.7481	58.0138	10.0	1.69	4.4(4.6)	177.2
6	5.09.2018	54.6923	58.0189	10.0	1.76	4.2(4.4)	189.3
7	18.10.2015	57.1839	58.8706	15.36	0.77	4.2(4.4)	84.2
8	26.01.2014	57.9947	60.0716	3.7	1.77	3.7(4.0)	177.1
9	22.12.2013	57.965	59.9027	1.8	1.7	3.6(3.92)	192.0
10	25.10.2006	56.8357	60.3549	31.1	1.07	3.6(3.92)	122.1
11	29.09.2013	58.0245	60.0526	10.8	1.79	3.5(3.85)	202.2
12	30.09.2011	55.5691	60.7395	0	1.49	3.5(3.85)	164.0
13	2.10.2006	54.6368	58.5078	0	1.79	3.4(3.78)	191.8
14	6.08.2006	57.5604	60.3273	0	1.48	3.4(3.78)	164.5
15	2.07.2006	57.8024	60.5901	0	1.76	3.4(3.78)	191.3
16	27.03.2012	54.9724	60.9562	0	1.99	3.3(3.71)	216.6
17	7.07.2004	54.7565	58.4347	10	1.68	3.3(3.71)	179.5
18	2.10.2006	54.5208	58.5916	0	1.91	3.2(3.64)	204.2
19	16.12.2008	57.0124	56.5826	0	1.23	3.1(3.57)	136.1
20	3.10.2006	54.5756	58.7461	0	1.86	3.1(3.57)	198.7
21	5.05.2008	55.5824	60.9329	0	1.57	3.0(3.5)	173.3
22	4.07.2006	54.7853	58.3791	10	1.65	3.0(3.5)	176.6
23	15.01.2006	57.6568	59.9881	0	1.45	3.0(3.5)	157.1
24	18.08.2002	55.644	60.902	10	1.53	3.0(3.5)	168.5
25	7.06.2022	54.4047	60.6501	10	2.36	4.5(4.66)	256.2
26	29.03.2010	58.7769	59.1708	7.5	2.37	3.6(3.92)	253.6
27	17.03.2014	54.0509	59.1368	0	2.4	3.5(3.85)	257.1
28	24.08.2012	54.1749	60.9928	0	2.64	3.4(3.78)	286.3
29	7.07.2004	54.5	59.9	33.0	2.07	3.4(3.78)	225.5
30	14.07.1996	58.4858	58.1295	33.0	2.07	MI3.4(3.83)	223.8
31	17.03.2014	54.0841	59.5485	0	2.71	3.2(3.64)	258.6
32	3.09.2011	54.6497	60.8322	0	2.9	3.2(3.64)	238.2
33	4.11.2005	57.5189	60.5675	0	1.54	mpv3.2	168.5
34	19.01.2015	58.3026	59.7945	0	1.99	Ml3(3.6)	213.5
35	5.06.2005	57.8045	60.1017	0	1.61	mpv3	174.0
36	30.04.2004	56.5369	60.861	17.1	1.27	mpv3	142.9
37	29.01.2004	55.1616	57.884	27.3	1.32	mpv3	144.8

плитами континентальной коры

-0.005

$ln(Y) = F_{M}(M) + F_{D}(R, M) + \varepsilon \sigma$ $F_{M}(M) = c_{1} + c_{2}(M - M_{h}) + c_{3}(M - M_{h})^{2}$ $F_{D}(R, M) = [c_{4} + c_{5}(M - M_{ref})]ln(R/R_{ref}) + c_{6}(R - R_{ref})$

Двухэтапный метод регрессии:

10⁰

10

10

10-3

10

Boore et al. (2014)

Boore & Atkinson (2008)

Rietbrock et al. (2013)

Drouet & Cotton (2015)

Cauzzi et al. (2015)

10¹

R_{JB}, km

This study

PGA, m/s²

- 1) определяются коэффициенты, описывающие убывание Y с расстоянием,
- определяется зависимость амплитудных факторов от магнитуды.
- F_M и F_D описывают эффекты очага и пути распространения, M – магнитуда, R –расстояние, ε – невязка, отражающая разброс наблюдаемых значений ln(Y) относительно оценок модели, σ – стандартное отклонение распределения невязки

10²

10²

Коэффициенты УПДГ, зависящие от спектрального периода

Т	C 1	C 2	С3	C 4	C 5	C 6
PGV	4.336809	0.744910	-0.130586	-1.126551	0.175383	-0.003416
PGA	0.416172	0.322472	-0.109281	-1.293378	0.155847	-0.004688
0.02	0.415749	0.321493	-0.109762	-1.293516	0.155764	-0.004679
0.03	0.801687	0.305289	-0.098167	-1.362806	0.160141	-0.004883
0.05	1.272166	0.359747	-0.091202	-1.361649	0.139198	-0.005664
0.075	1.410837	0.492812	-0.080403	-1.271167	0.107827	-0.006273
0.1	1.378241	0.560808	-0.070222	-1.225126	0.098204	-0.005910
0.15	1.266464	0.602051	-0.103438	-1.143799	0.075067	-0.005510
0.2	1.072517	0.579851	-0.143931	-1.081438	0.065104	-0.005347
0.25	0.896899	0.535190	-0.179936	-1.073986	0.071253	-0.004676
0.3	0.794471	0.534248	-0.212658	-1.041812	0.063583	-0.004568
0.4	0.681295	0.579941	-0.283049	-0.982317	0.039173	-0.004279
0.5	0.470730	0.538343	-0.335968	-0.979191	0.042584	-0.003625
0.75	0.018433	0.658764	-0.399108	-0.893634	0.031907	-0.003565
1.0	-0.255888	0.743144	-0.441062	-0.887694	0.032972	-0.002760
1.5	-0.679593	0.982844	-0.423998	-0.902457	0.046006	-0.001921
2.0	-1.077040	1.214210	-0.368096	-0.910801	0.069596	-0.001399
3.0	-1.541530	1.657328	-0.247342	-0.934430	0.086452	-0.000901
4.0	-2.090791	1.830840	-0.158675	-0.971619	0.123109	-0.000773
5.0	-2.474593	1.948040	-0.109515	-1.001623	0.131642	-0.000387
7.5	-3.332308	2.027001	-0.034408	-1.061959	0.170922	0.000130
10.0	-3.983718	1.994428	-0.020883	-1.083146	0.184066	0.000121

Коэффициенты УПДГ, не зависящие от спектрального периода

И=4-7 и R =1-250 км	h	M _b	M_{ref}	R _{ref}
0.02 c - 10 c	7.5	6.5	4.5	1.0

Для учёта неопределённости оценок сейсмических воздействий в рамках ВАСО, для построения логического дерева используются несколько УПДГ из других регионов с соответствующими весами.

В качестве альтернативных выбраны 5 современных УПДГ: 2 глобальных модели для коровой сейсмичности (1 и 2), 2 модели, разработанные для использования в Швейцарских Альпах (4 и 5) и модель, разработанная для Великобритании (3).

Особенности излучения и распространения сейсмических волн в Алтае-Саянском регионе, стохастическое моделирование и разработка уравнений прогноза движений грунта

Землетрясение 27 ноября 2023 г.

Стан-	Координат	гы станции	Выс у.м., м	Грунтовые	Гип. и эпиц.		PGA,	
ция	°с.ш.	°в. д.		условия	расст	., км	см/с²	
KLV02	54.65928	83.71364	144		18.0	14.9	33,2	
KHAR	54.61325	83.58966	130	Грунт	24.8	22.7	~40,0	
KLV01	54.74281	83.57880	245		28.0	26.2	17,4	
NVS	54.84063	83.23444	168	Кварц.жила	51.6	50.7	1,06	
NHES	54.85507	82.98549	121	Аллювий	66.7	65.9	0,8	
BSTK	54.56765	82.65347	121	Аллювий	84.0	83.4	0,33	
SALR	54.41694	85.70287	250		116.7	116.3	0,24	

GEM – Global Earthquake Model - публичная некоммерческая организация с государственным участием; один из продуктов - рекомендуемые УПДГ для разных регионов

Для Байкальской Рифтовой Зоны GEM рекомендует пять уравнений:

[Akkar, Bommer, 2007; Cauzzi, Faccioli, 2008] - создавались для Европы, и

разработанные в проекте Next Generation Attenuation [Boore, Atkinson, 2008; Campbell, Bozorgnia, 2008; Chiou, Youngs, 2008], которые позиционируются как универсальные для коровой сейсмичности. AKBO07 – [Akkar, Bommer, 2007], BOAT08 – [Boore, Atkinson, 2008], CABO08 – [Campbell, Bozorgnia, 2008], CHYO08 – [Chiou, Youngs, 2008].

$$ln(Y) = F_{M}(M) + F_{D}(R_{epi}, M) + \varepsilon\sigma$$

$$F_{M}(M) = e_{1} + \begin{cases} e_{2}(M - M_{h}) + e_{3}(M - M_{h})^{2}, M \leq M_{h} \\ e_{4}(M - M_{h}), M > M_{h} \end{cases}$$

$$(R_{epi'}M) = \begin{bmatrix} c_{1} + c_{2}(M - M_{ref}) \end{bmatrix} \ln(R/R_{ref}) + c_{3}(R - R_{ref})$$

$$T \quad c_{1} \quad c_{2} \quad c_{3} \quad e_{1} \quad e_{2} \quad e_{3} \quad e_{4}$$

$$PGA \quad -1.1201 \quad 0.1477 \quad -0.0046 \quad 0.8278 \quad 0.6136 \quad -0.0158 \quad 0.0000$$

$$PGV \quad -1.0145 \quad 0.1450 \quad -0.0033 \quad 4.4790 \quad 0.7283 \quad -0.1506 \quad 0.0000$$

$$\frac{h \quad M_{h} \quad M_{ref} \quad R_{ref} \quad \sigma}{6.23 \quad 6.75 \quad 4.5 \quad 1.0 \quad 0.55}$$

Учет пространственной неоднородности параметров сейсмического режима для построения надежных оценок сейсмической опасности

параметров сейсмического режима

Оценка сейсмических воздействий на площадке Лахта-центр в Санкт-Петербурге от удаленных землетрясений с очагами в зоне Вранча (Восточные Карпаты)

резонансное усиление колебаний на 0,5 – 3 Гц

Моделирование сценарного землетрясения: М_w = 8.0, Δσ~320 бар в Санкт-Петербурге по записям 27.10.2004 г. Mw=5.9

Акселерограммы землетрясений на сейсмостанции Пулково

Дата	Время	широта	долгота	глубина	магнитуд	
					а	
2004/10/27	20:34:36.81	45.787	26.622	95.8	5.9	Mw
2014/11/22	19:14:16.00	45.898	27.151	32.0	5.3	Mw
2016/09/23	23:11:20.06	45.715	26.618	92.0	5.6	Mw
2016/12/27	23:20:55.94	45.714	26.599	96.9	5.5	Mw
2018/10/28	00:38:11.39	45.608	26.407	147.8	5.5	Mw

РGA при сценарном землетрясении в Санкт-Петербурге ~4,7–7,6 см/с², что выше, чем в Москве: ~2.16 ± 0,33 см/с², что очевидно связано с влиянием грунтовых условий: резонансным усилением колебаний на 0,5 – 3 Гц